Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 20, 2026
-
Abstract The manipulation of magnetization through optically generated ultrafast spin currents is a fascinating area that needs a thorough understanding for its potential future applications. In this work, a comprehensive investigation of helicity‐driven optical spin‐orbit torque in heavy metal/ferromagnetic metal heterostructures is presented, specifically cobalt capped with gold or platinum, subject to laser pumping at different wavelengths. The results demonstrate up to tenfold enhancement in optical spin‐orbit torque quantum efficiency for gold compared to platinum of the same thickness when pumped with a visible laser. Additionally, the study provides the first experimental analysis of the photon energy dependence of optical spin‐orbit torque and derives the optical spin orientation spectra for both gold/cobalt and platinum/cobalt heterostructures. A key insight gained from the study is the impact of photon energy‐dependent spin transport in the system, which suggests the use of a high photon energy pump for efficient spin transport. These findings highlight the potential of spin current generation and manipulation in gold/ferromagnet heterostructures for a wide range of applications such as all‐optical magnetization switching, spin‐wave generation and control, and spintronic terahertz emission.more » « less
-
null (Ed.)Abstract The interaction between ultrafast lasers and magnetic materials is an appealing topic. It not only involves interesting fundamental questions that remain inconclusive and hence need further investigation, but also has the potential to revolutionize data storage technologies because such an opto-magnetic interaction provides an ultrafast and energy-efficient means to control magnetization. Fruitful progress has been made in this area over the past quarter century. In this paper, we review the state-of-the-art experimental and theoretical studies on magnetization dynamics and switching in ferromagnetic materials that are induced by ultrafast lasers. We start by describing the physical mechanisms of ultrafast demagnetization based on different experimental observations and theoretical methods. Both the spin-flip scattering theory and the superdiffusive spin transport model will be discussed in detail. Then, we will discuss laser-induced torques and resultant magnetization dynamics in ferromagnetic materials. Recent developments of all-optical switching (AOS) of ferromagnetic materials towards ultrafast magnetic storage and memory will also be reviewed, followed by the perspectives on the challenges and future directions in this emerging area.more » « less
-
Abstract Polaritons are quasiparticles originating from strong interactions between photons and elementary excitations that could enable high tunability, tight electromagnetic field confinement, and large density of photonic states, making it possible to achieve novel and otherwise inaccessible functionalities. For these reasons, polaritons spawn great interest in the fields of physics, materials science, and optics for both fundamental studies as well as potential applications (e.g., modulators, photodetectors, photoluminescence, etc.). In recent years, the explosive growth of research in graphene and other 2D van der Waals materials is witnessed because they provide a new platform that substantially complements conventional metals, dielectrics, and semiconductors to investigate different polariton modes. This review highlights the works published in recent years on the topic of polariton photonics based on structured metals, graphene, and transition‐metal dichalcogenides (TMDs). The exotic optical properties of the polaritons in metallic structures and 2D van der Waals materials offer bright prospects for the development of high‐performance photonic and optoelectronic devices.more » « less
-
Abstract Over the past decades, optical manipulation of magnetization by ultrafast laser pulses has attracted extensive interest. It not only shows intriguing fundamental science arising from the interactions between spins, electrons, phonons, and photons, but also manifests the potential to process and store data at a speed that is three orders of magnitude faster than the current technologies. In this paper, all‐optical helicity‐dependent switching (AO‐HDS) in hybrid metal–ferromagnet thin films, which consist of Co/Pt multilayers with perpendicular magnetic anisotropy and an Au film capping layer on the top, is experimentally demonstrated. The switching behaviors of the hybrid Co/Pt–Au material, with various laser repetition rates, scanning speeds, and fluencies, are systematically studied. In comparison with bare Co/Pt multilayers, the hybrid metal–ferromagnet thin films show pronounced AO‐HDS when the number of laser pulses per μm along the scanning direction gradually increases. In addition, the AO‐HDS effect is very robust against laser fluences. A possible mechanism is further proposed based on numerical simulations of the optomagnetic coupling model. These findings promise a new material system that exhibits stable AO‐HDS phenomena, and hence can transform future magnetic storage devices, especially with the addition of plasmonic nanostructures made of noble metals.more » « less
An official website of the United States government
